
CMPE59H - Bioinformatics

Project Report

Multiple Kernel Learning for Extracting Protein-protein

Interactions

Göker Erdog̃an

14.01.2012

1 Introduction

Proteins are the workforces of organisms taking crucial roles in vast amounts of biological processes. Know-
ing that two proteins interact carry highly important information both theoretically and practically. Un-
derstanding inner workings of organisms, predicting functions of proteins and designing drugs are some of
the problems that benefit greatly from such knowledge [8, 9, 10]. Since carrying out experiments to confirm
an interaction is costly and labor intensive, given the amount of possible interactions, other methods for
extracting protein-protein interactions (PPI) are valuable. One source of information for finding interacting
proteins is biomedical literature where a vast amount of possible interactions are documented by researchers.
However, again this procedure for mining PPIs from literature requires a lot of human labor and there are
many methods developed for extraction of PPIs by automated software. One approach to PPI extraction
relies on machine learning and natural language processing methods to learn models discriminating between
positive and negative interactions based on linguistic features of sentences. These features span a wide
spectrum from shallow features such as frequency of words, part of sentence (POS) tags to syntax trees and
dependency graphs of sentences. These features obtained from text are used for training learning algorithms
to separate false interactions from possible interactions. A high amount of research is carried out on ex-
tracting features that convey the information necessary for discrimination as much as possible. Literature is
filled with kernel functions; which measure the similarity between two feature vectors, for extraction of PPIs.
Tikk et al. [12] present a comprehensive benchmark of such kernels in literature to assess performance of
these from multiple perspectives. After the dazzling success of support vector machines [4], machine learning
researchers built a wide, deep body of knowledge in kernel based learning methods. A fruitful approach in
this regard has been multiple kernel learning [1] where a combination of kernels are utilized for learning
better models. We believe that problem of PPI extraction; given the high number of different kernels, may
benefit from such an approach. In this project, we apply multiple kernel learning algorithms on 3 kernels
that use different linguistic features mentioned in [12] and analyze the results from accuracy and kernels’
importance perspective.

2 Method

In this section, we will first introduce the kernels we will be employing for PPI extraction and then present
a summary of multiple kernel learning theory before detailing the specific multiple kernel methods we will
be using.

2.1 Kernels

A kernel function k(xi, xj) : RD ×RD → R measures the similarity between two vectors; xi and xj mapping
from possibly high dimensional input space of vectors to real values [1]. Kernel functions have great signifi-

1

2.1 Kernels CMPE59H Project Report

Figure 1: Syntax tree of sentence SsgG transcription also requires the DNA binding protein GerE. [12]

cance due to their role in support vector machines where they can transform a non-linear problem to linear
space. Tikk et al. [12] present a multitude of kernels based on various linguistic features for PPI extraction.
We choose 3 of these kernels in our work. We have picked one kernel from each of the linguistic feature
types; shallow, syntax tree and dependency graph and tried to make sure that each one is a top performer
among the kernels that are based on the same linguistic features.

2.1.1 Shallow Linguistic Kernel

This kernel is the simplest and least computationally expensive one which is based only on shallow parsing
information [6]. Actually, similarity value calculated by the kernel is sum of two kernels; global context
and local context kernel. Global context kernel uses bag of words representation to calculate the number
of common words between two PPIs from different places in the sentence. 3 subsets of the sentence are
considered; from the two proteins in the interaction, all the words before the first one appearing in the
sentence and words between the proteins constitute the first subset. Secondly, only words in between two
proteins are considered. Lastly, words between the proteins and after the second protein make up the last
subset. Number of common words between these 3 subsets in two sentences are called the global context
kernel. Local context kernel uses POS tag, lemma of the words to the left and right of proteins in interaction
and applied scalar product to obtain kernel value. Finally, values for global and local context kernels are
summed to form shallow linguistic kernel.

2.1.2 Subtree Kernel

Based on syntax tree representation of sentences, subtree kernel counts the number of common subtrees
in two sentences to calculate a similarity measure [13]. A subtree is considered to be a node with all its
descendants in the tree and two subtrees are considered identical if the node labels and order of children are
identical for all nodes.

2.1.3 k-band Shortest Path Spectrum Kernel (k-BSPS)

The most complex of the kernels we will be experimenting with uses walks on shortest path between nodes
denoting the proteins in the dependency graph [12]. All walks of length in [qmin, qmax] lying on the shortest
path between proteins are compared with the walks of same length from other sentence to calculate the
similarity score. Nodes that are within distance k from the shortest path are also included when finding
all walks of a certain a length. When two walks are being compared matches and mismatches are weighted
according to the type of node; dependency type (D), entity (E) and other surface tokens (L). Besides, it is
possible to specify some mismatches as intolerant meaning that such a mismatch sets the similarity score
between two walks to 0. Kernel value for two PPIs are calculated with the following formula where L,E,D
sets if that type of mismatch is tolerated (0 being tolerated, -1 being in-tolerated), l, e, d are the weights
matches and mismatches of L, E, D types and pq is the set of walks of length q from k-band shortest path

2

2.2 Multiple Kernel Learning CMPE59H Project Report

Figure 2: Subtrees of syntax tree in figure 1 [12]

of pair p.

S(pi, pj) =

q=qmax∑
q=qmin

maxi∈pq
i ,j∈pq

j
(scoreL,E,D,l,e,d(i, j)) (1)

2.2 Multiple Kernel Learning

Support vector machine (SVM) [4] is a highly researched and widely popular classification algorithm that
learns the linear discriminant with maximum margin between two classes. Given a sample of N training
instances {(xt, yt)}Nt=1 where xt are D-dimensional input vectors and yt ∈ {−1,+1} are class labels, SVM
learns the linear boundary of the following form where w is the vector of coefficients and b is the bias term.

f(x) = wx+ b

Maximizing the distance of training samples from the boundary can be achieved by the following quadratic
optimization problem [1].

minimize
1

2
||w||22 + C

N∑
t=1

ξt

w.r.t w ∈ RD, ξ ∈ RN
+ , b ∈ R

subject to yt(wxt + b) ≥ 1− ξt ∀t

In the above problem, ξ denotes slack variables and C is a parameter of the method that adjusts between
model simplicity and classification error. Writing the dual formulation of this problem and solving it results
in the following discriminant function where decision boundary is defined as a weighted sum of training
samples.

f(x) =

N∑
t=1

αtytxtx+ b

In the above function αt is the weight of training sample xt. After training only some of the αt values
are non-zero and these training samples are called support vectors. In addition, discriminant actually
does not directly use feature representations of input samples since it only needs xtx scalar product which

3

2.2 Multiple Kernel Learning CMPE59H Project Report

measures the similarity between two samples. It is possible to replace this product with any kernel function
k(xt, xp) : RD × RD → R which enables us to learn non-linear boundaries by mapping input samples to
a new space with a non-linear kernel function. Moreover, quadratic optimization problems can be solved
optimally meaning that we do not need to resort to locally optimal learning algorithms when solving SVMs.

In recent years, multiple kernel learning (MKL) methods, where instead of using a single kernel for training
a combination of kernels are used, drew much attention. By combining multiple kernels we may aim to find
the kernels which work best for our problem by letting the MKL method to do the choosing. Besides, different
kernels may depend upon different feature representations of input data thus providing more information to
algorithm and making it possible to learn a better boundary. Now, instead of using only values of a single
kernel k(xt, xp), we define a new kernel by using a function fcomb that combines information from multiple
kernels km into a single one.

k(xt, xp) = fcomb({km(xt, xp)}Pm=1)

There are many variants of multiple kernel learning algorithms in literature each varying in a way from
others. When viewed from a broader perspective these variants fall into specific categories from different
perspectives. When we focus on the combination functions employed by different MKL methods, we can say
that roughly 3 categories exist. In fixed combination, single kernels are combined in a predefined manner
and an SVM is trained on the obtained kernel. Some methods use heuristics based on various information
to find the relative weights of each kernel in combination while methods in third category combine kernels
by taking their linear, conic or convex sums [1]. From training perspective, we can speak of two classes of
methods where two-step methods calculate weights and train SVM to find support vectors as separate steps
while coupled methods learn the parameters of combination function and support vectors simultaneously.
For the purpose of combining kernels for PPI extraction, we will review 3 MKL methods one from each
combination category.

2.2.1 Rule Based Multiple Kernel Learning (RBMKL)

In rule based multiple kernel learning (RBMKL), Cristianini et al [5] propose to take the mean or product
of single kernels to use it as our combined kernel. Then, an SVM is trained on the obtained kernel. We use
mean combination rule in our experiments.

k(xt, xp) =
1

P

P∑
m=1

km(xt, xp)

2.2.2 Alignment Based Multiple Kernel Learning (ABMKL)

He et al. [7] present a solution to finding the kernel weights in the combination function by minimizing
the distance between the combined kernel and ideal kernel matrix with the following optimization problem.
Ideal kernel for a binary classification task is given by yyT .

minimize ‖Kw − yyT ‖2F
w.r.t w ∈ RP

+

subject to

P∑
m=1

wm = 1

ABMKL learns a combined kernel Kw which is a convex combination of individual kernels. During training,
firstly optimal kernel weights are found via above problem and then an SVM is trained with the combined
kernel.

4

CMPE59H Project Report

Positive pairs Negative pairs
AIMed 1000 4834

LLL 164 166

Table 1: Data sets used for evaluation

2.2.3 Multiple Kernel Learning by Bach et al. [2] (BMKL)

BMKL method by Bach et al. [2] learns the support vectors and kernel weights simultaneously with the
following optimization problem

minimize
1

2
(

P∑
m=1

‖wm‖2)2 + C

N∑
t=1

ξi

w.r.t w ∈ RSm , ξ ∈ RN
+ , b ∈ R

subject to yt(

P∑
m=1

wmx
t + b) ≥ 1− ξi ∀i

where Sm is the dimensionality of the feature space of kernel Km. BMKL method finds a linear combination
of input kernels.

3 Experiments

For evaluating multiple kernel methods on PPI extraction task, we have used two widely used data sets;
AIMed and LLL [3, 11]. We have obtained kernel gram matrices for these data sets by modifying the source
code provided in the benchmark study [12]. From the kernels we have experimented with, SL does not use
any parameters. For ST and k-BSPS optimum parameter values reported are used (for SL; c = 1,j = 2,λ =
0.4,µ = 0.4 and for k-BSPS; L = 0, E = 0, D = 0, l = 1, e = 6, d = 3, qmin = 0, qmax = 2, k = 0, j = 2).
Multiple kernel learning methods detailed in the previous section are run with 10 fold CV on the splits
provided by Tikk et al. For cost parameter of kernel methods, we have executed a parameter search on
values {0.01, 0.1, 1, 10, 100}. In the results, we observe area under the ROC curve and F1 measures as well
as kernel weights found by the methods.

4 Results

In table 4, we provide F1 measure values for each kernel trained independently and all three kernels combined
with three different multiple kernel learning methods. Firstly, F1 values we reach for single kernels are lower
than the reported figures in [12] which may be attributed to lack of parameter fine tuning of kernels and
methods. Also, since our purpose is to observe the contribution of multiple kernel learning methods rather
than reaching higher accuracies, we did not strive to match the reported performances. When we analyze
results for single kernels, we see that SL being simplest kernel performs best or comparably in two data sets.
Subtree kernel (ST) exhibits the lowest performance while most complex kernel k-BSPS performs best or
second in two data sets. These results also confirm the finding by Tikk et al. where SL kernel is one of the
performers.

From the three multiple kernel learning methods, RBMKL and ABMKL consistently performs lower than
the highest accuracies for single kernels. This result implies that combining kernels in a fixed manner or with
an heuristic may not be able to exploit the information diversity among different kernels. However, BMKL
method always matches or reaches a higher performance than single kernels showing us that combining
multiple kernels for PPI extraction is indeed well justified. The fact that BMKL’s performance on LLL is
similar with best single kernel performance may result from low sample size of data set and single kernels
already being able to reach highest possible performance. When we observe the weights of kernels in the
combination for BMKL and ABMKL method in table 4, SL always gets a much higher weight while k-BSPS

5

REFERENCES CMPE59H Project Report

SVM with SL SVM with ST SVM with k-BSPS BMKL RBMKL ABMKL
LLL 0.744 0.706 0.793 0.793 0.681 0.722
AIMed 0.518 0.272 0.439 0.545 0.317 0.357

Table 2: F1 Measure

BMKL ABMKL
SL ST k-BSPS SL ST k-BSPS

LLL weights 3.4 0.3 0.1 0.57 0.4 0.03
AIMed weights 2.8 0.1 0.01 0.66 0.3 0.07

Table 3: Kernel weights

nearly vanishes in all combinations. It is rational for SL to get higher weight but it is somewhat unexpected
for k-BSPS kernel being the only kernel based on dependency graph to have such low weight. It may be
speculated that SL and ST kernels together provide the information represented by dependency graphs but
this claim requires more experimentation and formal arguments to support it. In table 4, we provide the
results for area under the ROC curves (AUC) for each method and kernel. We omit its discussion since it
is similar to above analysis and AUC is not a reliable measure for PPI extraction problems. This work may
be extended largely by applying the multiple kernel methods on other data sets and including more MKL
methods in evaluations.

SVM-sl SVM-st SVM-kbsps BMKL RBMKL ABMKL
LLL 0.825 0.701 0.837 0.837 0.804 0.772
AIMed 0.830 0.659 0.739 0.833 0.596 0.655

Table 4: Area under the ROC curve

References

[1] Ethem Alpaydin and Mehmet Gonen. Multiple kernel learning algorithms. Journal of Machine Learning
Research, 12, 2011.

[2] Francis R. Bach, Gert R. G. Lanckriet, and Michael I. Jordan. Multiple kernel learning, conic duality,
and the smo algorithm. In Proceedings of the twenty-first international conference on Machine learning,
ICML ’04, pages 6–, New York, NY, USA, 2004. ACM.

[3] Razvan Bunescu, Ruifang Ge, Rohit J. Kate, Edward M. Marcotte, Raymond J. Mooney, Arun Ku-
mar Ramani, and Yuk Wah Wong. Comparative experiments on learning information extractors for
proteins and their interactions. Artificial Intelligence in Medicine (special issue on Summarization and
Information Extraction from Medical Documents), (2):139–155, 2005.

[4] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning, 20:273–297, 1995.
10.1007/BF00994018.

[5] Nello Cristianini and John Shawe-Taylor. An introduction to support Vector Machines: and other
kernel-based learning methods. Cambridge University Press, New York, NY, USA, 2000.

[6] Claudio Giuliano, Alberto Lavelli, and Lorenza Romano. Exploiting shallow linguistic information for
relation extraction from biomedical literature. In Proceedings of the 11th Conference of the European
Chapter of the Association for Computational Linguistics (EACL 2006), Trento, Italy, April 2006.

[7] Junfeng He, Shih-Fu Chang, and Lexing Xie. Fast kernel learning for spatial pyramid matching. In
Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, pages 1 –7, june
2008.

6

REFERENCES CMPE59H Project Report

[8] Robert Hoffmann, Martin Krallinger, Eduardo Andres, Javier Tamames, Christian Blaschke, and Al-
fonso Valencia. Text Mining for Metabolic Pathways, Signaling Cascades, and Protein Networks. Sci.
STKE, 2005(283):pe21+, May 2005.

[9] Trey Ideker and Roded Sharan. Protein networks in disease. Genome Research, 18(4):644–652, April
2008.

[10] Samira Jaeger, Sylvain Gaudan, Ulf Leser, and Dietrich Rebholz-Schuhmann. Integrating protein-
protein interactions and text mining for protein function prediction. BMC Bioinformatics, 9(Suppl
8):S2, 2008.

[11] C. Ndellec. Learning language in logic - genic interaction extraction challenge. In Proceedings of the
Learning Language in Logic 2005 Workshop at the International Conference on Machine Learning, 2005.

[12] Domonkos Tikk, Philippe Thomas, Peter Palaga, Jörg Hakenberg, and Ulf Leser. A comprehensive
benchmark of kernel methods to extract proteinprotein interactions from literature. PLoS Comput Biol,
6(7):e1000837, 07 2010.

[13] S. V. N. Vishwanathan and Alex Smola. Fast Kernels for String and Tree Matching. Advances in Neural
Information Processing Systems, 15, 2003.

7

